Part Number Hot Search : 
00221 78L24A 5253B SUD50N02 LX901 CS520 SC3BA2 L79L15CD
Product Description
Full Text Search
 

To Download M28W160ECB70N1 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 M28W160ECT M28W160ECB
16 Mbit (1Mb x16, Boot Block) 3V Supply Flash Memory
FEATURES SUMMARY



SUPPLY VOLTAGE - VDD = 2.7V to 3.6V Core Power Supply - VDDQ= 1.65V to 3.6V for Input/Output - VPP = 12V for fast Program (optional) ACCESS TIME: 70, 85, 90,100ns PROGRAMMING TIME: - 10s typical - Double Word Programming Option COMMON FLASH INTERFACE - 64 bit Security Code MEMORY BLOCKS - Parameter Blocks (Top or Bottom location) - Main Blocks BLOCK LOCKING - All blocks locked at Power Up - Any combination of blocks can be locked - WP for Block Lock-Down SECURITY - 64 bit user Programmable OTP cells - 64 bit unique device identifier - One Parameter Block Permanently Lockable AUTOMATIC STAND-BY MODE PROGRAM and ERASE SUSPEND 100,000 PROGRAM/ERASE CYCLES per BLOCK ELECTRONIC SIGNATURE - Manufacturer Code: 20h - Top Device Code, M28W160ECT: 88CEh - Bottom Device Code, M28W160ECB: 88CFh ECOPACK PACKAGES AVAILABLE
Figure 1. Packages
FBGA
TFBGA46 (ZB) 6.39 x 6.37mm
TSOP48 (N) 12 x 20mm
March 2008
1/50
M28W160ECT, M28W160ECB
TABLE OF CONTENTS
FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Figure 1. Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Figure 2. Table 1. Figure 3. Figure 4. Figure 5. Figure 6. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 TSOP Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 TFBGA Connections (Top view through package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Block Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Security Block and Protection Register Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
SIGNAL DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Address Inputs (A0-A19). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Data Input/Output (DQ0-DQ15). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Chip Enable (E). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Output Enable (G). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Write Enable (W). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Write Protect (WP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Reset (RP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 VDD Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 VDDQ Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 VPP Program Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 VSS Ground. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 BUS OPERATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Output Disable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Standby. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Automatic Standby. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Table 2. Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 COMMAND INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Read Memory Array Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Read Status Register Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Read Electronic Signature Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Read CFI Query Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Block Erase Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Double Word Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Clear Status Register Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Program/Erase Suspend Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2/50
M28W160ECT, M28W160ECB
Program/Erase Resume Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Protection Register Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Block Lock Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Block Unlock Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Block Lock-Down Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Table 3. Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Table 4. Read Electronic Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Table 5. Read Block Lock Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Table 6. Read Protection Register and Lock Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Table 7. Program, Erase Times and Program/Erase Endurance Cycles . . . . . . . . . . . . . . . . . . . 15 BLOCK LOCKING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Reading a Block's Lock Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Locked State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Unlocked State. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Lock-Down State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Locking Operations During Erase Suspend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Table 8. Block Lock Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Table 9. Protection Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 STATUS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Program/Erase Controller Status (Bit 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Erase Suspend Status (Bit 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Erase Status (Bit 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Program Status (Bit 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 VPP Status (Bit 3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Program Suspend Status (Bit 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Block Protection Status (Bit 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Reserved (Bit 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Table 10. Status Register Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Table 11. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 DC and AC PARAMETERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Table 12. Operating and AC Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 7. AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 8. AC Measurement Load Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Table 13. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Table 14. DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Figure 9. Read Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Table 15. Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 10.Write AC Waveforms, Write Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Table 16. Write AC Characteristics, Write Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Figure 11.Write AC Waveforms, Chip Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Table 17. Write AC Characteristics, Chip Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3/50
M28W160ECT, M28W160ECB
Figure 12.Power-Up and Reset AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Table 18. Power-Up and Reset AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Figure 13.TSOP48 - 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Outline . . . . . . . . . 29 Table 19. TSOP48 - 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Mechanical Data . 29 Figure 14.TFBGA46 6.39x6.37mm - 8x6 ball array, 0.75mm pitch, Bottom View Package Outline 30 Table 20. TFBGA46 6.39x6.37mm - 8x6 ball array, 0.75mm pitch, Package Mechanical Data . . . 30 Figure 15.TFBGA46 Daisy Chain - Package Connections (Top view through package) . . . . . . . . 31 Figure 16.TFBGA46 Daisy Chain - PCB Connections proposal (Top view through package) . . . . 31 PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Table 21. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Table 22. Daisy Chain Ordering Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 APPENDIX A.BLOCK ADDRESS TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Table 23. Top Boot Block Addresses, M28W160ECT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Table 24. Bottom Boot Block Addresses, M28W160ECB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 APPENDIX B.COMMON FLASH INTERFACE (CFI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Table 25. Query Structure Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Table 26. CFI Query Identification String. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Table 27. CFI Query System Interface Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Table 28. Device Geometry Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Table 29. Primary Algorithm-Specific Extended Query Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Table 30. Security Code Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 APPENDIX C.FLOWCHARTS AND PSEUDO CODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Figure 17.Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Figure 18.Double Word Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Figure 19.Program Suspend & Resume Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . 42 Figure 20.Erase Flowchart and Pseudo Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Figure 21.Erase Suspend & Resume Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . 44 Figure 22.Locking Operations Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Figure 23.Protection Register Program Flowchart and Pseudo Code. . . . . . . . . . . . . . . . . . . . . . . 46 APPENDIX D.COMMAND INTERFACE AND PROGRAM/ERASE CONTROLLER STATE. . . . . . . . 47 Table 31. Write State Machine Current/Next, sheet 1 of 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Table 32. Write State Machine Current/Next, sheet 2 of 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Table 33. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4/50
M28W160ECT, M28W160ECB
SUMMARY DESCRIPTION
The M28W160EC is a 16 Mbit (1 Mbit x 16) nonvolatile Flash memory that can be erased electrically at the block level and programmed in-system on a Word-by-Word basis. These operations can be performed using a single low voltage (2.7 to 3.6V) supply. VDDQ allows to drive the I/O pin down to 1.65V. An optional 12V VPP power supply is provided to speed up customer programming. The device features an asymmetrical blocked architecture. The M28W160EC has an array of 39 blocks: 8 Parameter Blocks of 4 KWord and 31 Main Blocks of 32 KWord. M28W160ECT has the Parameter Blocks at the top of the memory address space while the M28W160ECB locates the Parameter Blocks starting from the bottom. The memory maps are shown in Figure 5., Block Addresses. The M28W160EC features an instant, individual block locking scheme that allows any block to be locked or unlocked with no latency, enabling instant code and data protection. All blocks have three levels of protection. They can be locked and locked-down individually preventing any accidental programming or erasure. There is an additional hardware protection against program and erase. When VPP VPPLK all blocks are protected against program or erase. All blocks are locked at powerup. Each block can be erased separately. Erase can be suspended in order to perform either read or program in any other block and then resumed. Program can be suspended to read data in any other block and then resumed. Each block can be programmed and erased over 100,000 cycles. The device includes a 128 bit Protection Register and a Security Block to increase the protection of a system design. The Protection Register is divided into two 64 bit segments, the first one contains a unique device number written by Numonyx, while the second one is one-time-programmable by the user. The user programmable segment can be permanently protected. The Security Block, parameter block 0, can be permanently protected by the user. Figure 6., shows the Security Block and Protection Register Memory Map. Program and Erase commands are written to the Command Interface of the memory. An on-chip Program/Erase Controller takes care of the timings necessary for program and erase operations. The end of a program or erase operation can be detected and any error conditions identified. The command set required to control the memory is consistent with JEDEC standards. The memory is offered in TSOP48 (10 X 20mm) and TFBGA46 (6.39 x 6.37mm, 0.75mm pitch) packages. In order to meet environmental requirements, Numonyx also offers the M28W160ECT and the M28W160ECB in ECOPACK(R) packages. ECOPACK packages are Lead-free. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. The memories are supplied with all the bits erased (set to '1').
5/50
M28W160ECT, M28W160ECB
Figure 2. Logic Diagram Table 1. Signal Names
A0-A19 Address Inputs Data Input/Output Chip Enable Output Enable Write Enable Reset Write Protect Core Power Supply Power Supply for Input/Output Optional Supply Voltage for Fast Program & Erase Ground Not Connected Internally
VDD VDDQ VPP 20 A0-A19 W E G RP M28W160ECT M28W160ECB 16 DQ0-DQ15
DQ0-DQ15 E G W RP WP VDD VDDQ
WP
VPP
VSS
AI07542
VSS NC
Figure 3. TSOP Connections
A15 A14 A13 A12 A11 A10 A9 A8 NC NC W RP VPP WP A19 A18 A17 A7 A6 A5 A4 A3 A2 A1
1
48
12 M28W160ECT 37 13 M28W160ECB 36
24
25
A16 VDDQ VSS DQ15 DQ7 DQ14 DQ6 DQ13 DQ5 DQ12 DQ4 VDD DQ11 DQ3 DQ10 DQ2 DQ9 DQ1 DQ8 DQ0 G VSS E A0
AI07543
6/50
M28W160ECT, M28W160ECB
Figure 4. TFBGA Connections (Top view through package)
1 2 3 4 5 6 7 8
A
A13
A11
A8
VPP
WP
A19
A7
A4
B
A14
A10
W
RP
A18
A17
A5
A2
C
A15
A12
A9
A6
A3
A1
D
A16
DQ14
DQ5
DQ11
DQ2
DQ8
E
A0
E
VDDQ
DQ15
DQ6
DQ12
DQ3
DQ9
DQ0
VSS
F
VSS
DQ7
DQ13
DQ4
VDD
DQ10
DQ1
G
AI03804
Figure 5. Block Addresses
M28W160ECT Top Boot Block Addresses FFFFF 4 KWords FF000 Total of 8 4 KWord Blocks F8FFF 4 KWords F8000 F7FFF 32 KWords F0000 0FFFF 32 KWords 08000 07FFF 4 KWords Total of 31 32 KWord Blocks 0FFFF 32 KWords 08000 07FFF 32 KWords 00000 00000
AI07544
M28W160ECB Bottom Boot Block Addresses FFFFF 32 KWords F8000 F7FFF 32 KWords F0000 Total of 31 32 KWord Blocks
07000 Total of 8 4 KWord Blocks 00FFF 4 KWords
Note: Also see APPENDIX A., Table 23. and Table 24. for a full listing of the Block Addresses.
7/50
M28W160ECT, M28W160ECB
Figure 6. Security Block and Protection Register Memory Map
PROTECTION REGISTER SECURITY BLOCK 88h User Programmable OTP 85h 84h Parameter Block # 0 81h 80h Protection Register Lock 2 1 0 Unique device number
AI03523
8/50
M28W160ECT, M28W160ECB
SIGNAL DESCRIPTIONS
See Figure 2., Logic Diagram and Table 1., Signal Names, for a brief overview of the signals connected to this device. Address Inputs (A0-A19). The Address Inputs select the cells in the memory array to access during Bus Read operations. During Bus Write operations they control the commands sent to the Command Interface of the internal state machine. Data Input/Output (DQ0-DQ15). The Data I/O outputs the data stored at the selected address during a Bus Read operation or inputs a command or the data to be programmed during a Write Bus operation. Chip Enable (E). The Chip Enable input activates the memory control logic, input buffers, decoders and sense amplifiers. When Chip Enable is at VILand Reset is at VIH the device is in active mode. When Chip Enable is at VIH the memory is deselected, the outputs are high impedance and the power consumption is reduced to the stand-by level. Output Enable (G). The Output Enable controls data outputs during the Bus Read operation of the memory. Write Enable (W). The Write Enable controls the Bus Write operation of the memory's Command Interface. The data and address inputs are latched on the rising edge of Chip Enable, E, or Write Enable, W, whichever occurs first. Write Protect (WP). Write Protect is an input that gives an additional hardware protection for each block. When Write Protect is at VIL, the LockDown is enabled and the protection status of the block cannot be changed. When Write Protect is at VIH, the Lock-Down is disabled and the block can be locked or unlocked. (refer to Table 6., Read Protection Register and Lock Register). Reset (RP). The Reset input provides a hardware reset of the memory. When Reset is at VIL, the memory is in reset mode: the outputs are high impedance and the current consumption is minimized. After Reset all blocks are in the Locked state. When Reset is at VIH, the device is in normal operation. Exiting reset mode the device enters read array mode, but a negative transition of Chip Enable or a change of the address is required to ensure valid data outputs. V DD Supply Voltage. VDD provides the power supply to the internal core of the memory device. It is the main power supply for all operations (Read, Program and Erase). V DDQ Supply Voltage. VDDQ provides the power supply to the I/O pins and enables all Outputs to be powered independently from VDD. VDDQ can be tied to VDD or can use a separate supply. V PP Program Supply Voltage. VPP is both a control input and a power supply pin. The two functions are selected by the voltage range applied to the pin. The Supply Voltage VDD and the Program Supply Voltage VPP can be applied in any order. If VPP is kept in a low voltage range (0V to 3.6V) VPP is seen as a control input. In this case a voltage lower than VPPLK gives an absolute protection against program or erase, while VPP > VPP1 enables these functions (see Table 14., DC Characteristics, for the relevant values). VPP is only sampled at the beginning of a program or erase; a change in its value after the operation has started does not have any effect and program or erase operations continue. If VPP is in the range 11.4V to 12.6V it acts as a power supply pin. In this condition VPP must be stable until the Program/Erase algorithm is completed (see Table 16. and Table 17.). VSS Ground. VSS is the reference for all voltage measurements. Note: Each device in a system should have VDD, VDDQ and VPP decoupled with a 0.1F capacitor close to the pin. See Figure 8., AC Measurement Load Circuit. The PCB trace widths should be sufficient to carry the required VPP program and erase currents.
9/50
M28W160ECT, M28W160ECB
BUS OPERATIONS
There are six standard bus operations that control the device. These are Bus Read, Bus Write, Output Disable, Standby, Automatic Standby and Reset. See Table 2., Bus Operations, for a summary. Typically glitches of less than 5ns on Chip Enable or Write Enable are ignored by the memory and do not affect bus operations. Read. Read Bus operations are used to output the contents of the Memory Array, the Electronic Signature, the Status Register and the Common Flash Interface. Both Chip Enable and Output Enable must be at VIL in order to perform a read operation. The Chip Enable input should be used to enable the device. Output Enable should be used to gate data onto the output. The data read depends on the previous command written to the memory (see Command Interface section). See Figure 9., Read Mode AC Waveforms, and Table 15., Read AC Characteristics, for details of when the output becomes valid. Read mode is the default state of the device when exiting Reset or after power-up. Write. Bus Write operations write Commands to the memory or latch Input Data to be programmed. A write operation is initiated when Chip Enable and Write Enable are at VIL with Output Enable at VIH. Commands, Input Data and Addresses are latched on the rising edge of Write Enable or Chip Enable, whichever occurs first. See Figures 10 and 11, Write AC Waveforms, and Tables 16 and 17, Write AC Characteristics, for details of the timing requirements. Output Disable. The data outputs are high impedance when the Output Enable is at VIH. Standby. Standby disables most of the internal circuitry allowing a substantial reduction of the current consumption. The memory is in stand-by when Chip Enable is at VIH and the device is in read mode. The power consumption is reduced to the stand-by level and the outputs are set to high impedance, independently from the Output Enable or Write Enable inputs. If Chip Enable switches to VIH during a program or erase operation, the device enters Standby mode when finished. Automatic Standby. Automatic Standby provides a low power consumption state during Read mode. Following a read operation, the device enters Automatic Standby after 150ns of bus inactivity even if Chip Enable is Low, VIL, and the supply current is reduced to IDD1. The data Inputs/Outputs will still output data if a bus Read operation is in progress. Reset. During Reset mode when Output Enable is Low, VIL, the memory is deselected and the outputs are high impedance. The memory is in Reset mode when Reset is at VIL. The power consumption is reduced to the Standby level, independently from the Chip Enable, Output Enable or Write Enable inputs. If Reset is pulled to VSS during a Program or Erase, this operation is aborted and the memory content is no longer valid.
Table 2. Bus Operations
Operation Bus Read Bus Write Output Disable Standby Reset E VIL VIL VIL VIH X G VIL VIH VIH X X W VIH VIL VIH X X RP VIH VIH VIH VIH VIL WP X X X X X VPP Don't Care VDD or VPPH Don't Care Don't Care Don't Care DQ0-DQ15 Data Output Data Input Hi-Z Hi-Z Hi-Z
Note: X = VIL or VIH, VPPH = 12V 5%.
10/50
M28W160ECT, M28W160ECB
COMMAND INTERFACE
All Bus Write operations to the memory are interpreted by the Command Interface. Commands consist of one or more sequential Bus Write operations. An internal Program/Erase Controller handles all timings and verifies the correct execution of the Program and Erase commands. The Program/Erase Controller provides a Status Register whose output may be read at any time during, to monitor the progress of the operation, or the Program/Erase states. See APPENDIX D., Table 31., Write State Machine Current/Next, for a summary of the Command Interface. The Command Interface is reset to Read mode when power is first applied, when exiting from Reset or whenever VDD is lower than VLKO. Command sequences must be followed exactly. Any invalid combination of commands will reset the device to Read mode. Refer to Table 3., Commands, in conjunction with the text descriptions below. Read Memory Array Command The Read command returns the memory to its Read mode. One Bus Write cycle is required to issue the Read Memory Array command and return the memory to Read mode. Subsequent read operations will read the addressed location and output the data. When a device Reset occurs, the memory defaults to Read mode. Read Status Register Command The Status Register indicates when a program or erase operation is complete and the success or failure of the operation itself. Issue a Read Status Register command to read the Status Register's contents. Subsequent Bus Read operations read the Status Register at any address, until another command is issued. See Table 10., Status Register Bits, for details on the definitions of the bits. The Read Status Register command may be issued at any time, even during a Program/Erase operation. Any Read attempt during a Program/ Erase operation will automatically output the content of the Status Register. Read Electronic Signature Command The Read Electronic Signature command reads the Manufacturer and Device Codes and the Block Locking Status, or the Protection Register. The Read Electronic Signature command consists of one write cycle, a subsequent read will output the Manufacturer Code, the Device Code, the Block Lock and Lock-Down Status, or the Protection and Lock Register. See Tables 4, 5 and 6 for the valid address. Read CFI Query Command The Read Query Command is used to read data from the Common Flash Interface (CFI) Memory Area, allowing programming equipment or applications to automatically match their interface to the characteristics of the device. One Bus Write cycle is required to issue the Read Query Command. Once the command is issued subsequent Bus Read operations read from the Common Flash Interface Memory Area. See APPENDIX B., COMMON FLASH INTERFACE (CFI), Tables 25, 26, 27, 28, 29 and 30 for details on the information contained in the Common Flash Interface memory area. Block Erase Command The Block Erase command can be used to erase a block. It sets all the bits within the selected block to '1'. All previous data in the block is lost. If the block is protected then the Erase operation will abort, the data in the block will not be changed and the Status Register will output the error. Two Bus Write cycles are required to issue the command. The first bus cycle sets up the Erase command. The second latches the block address in the internal state machine and starts the Program/ Erase Controller. If the second bus cycle is not Write Erase Confirm (D0h), Status Register bits b4 and b5 are set and the command aborts. Erase aborts if Reset turns to VIL. As data integrity cannot be guaranteed when the Erase operation is aborted, the block must be erased again. During Erase operations the memory will accept the Read Status Register command and the Program/Erase Suspend command, all other commands will be ignored. Typical Erase times are given in Table 7., Program, Erase Times and Program/Erase Endurance Cycles. See APPENDIX C., Figure 20., Erase Flowchart and Pseudo Code, for a suggested flowchart for using the Erase command. Program Command The memory array can be programmed word-byword. Two bus write cycles are required to issue the Program Command. The first bus cycle sets up the Program command. The second latches the Address and the Data to be written and starts the Program/Erase Controller. During Program operations the memory will accept the Read Status Register command and the Program/Erase Suspend command. Typical Program times are given in Table 7., Program, Erase Times and Program/Erase Endurance Cycles.
11/50
M28W160ECT, M28W160ECB
Programming aborts if Reset goes to VIL. As data integrity cannot be guaranteed when the program operation is aborted, the block containing the memory location must be erased and reprogrammed. See APPENDIX C., Figure 17., Program Flowchart and Pseudo Code, for the flowchart for using the Program command. Double Word Program Command This feature is offered to improve the programming throughput, writing a page of two adjacent words in parallel.The two words must differ only for the address A0. Programming should not be attempted when VPP is not at VPPH. The command can be executed if VPP is below VPPH but the result is not guaranteed. Three bus write cycles are necessary to issue the Double Word Program command. The first bus cycle sets up the Double Word Program Command. The second bus cycle latches the Address and the Data of the first word to be written. The third bus cycle latches the Address and the Data of the second word to be written and starts the Program/Erase Controller. Read operations output the Status Register content after the programming has started. Programming aborts if Reset goes to VIL. As data integrity cannot be guaranteed when the program operation is aborted, the block containing the memory location must be erased and reprogrammed. See APPENDIX C., Figure 18., Double Word Program Flowchart and Pseudo Code, for the flowchart for using the Double Word Program command. Clear Status Register Command The Clear Status Register command can be used to reset bits 1, 3, 4 and 5 in the Status Register to `0'. One bus write cycle is required to issue the Clear Status Register command. The bits in the Status Register do not automatically return to `0' when a new Program or Erase command is issued. The error bits in the Status Register should be cleared before attempting a new Program or Erase command. Program/Erase Suspend Command The Program/Erase Suspend command is used to pause a Program or Erase operation. One bus write cycle is required to issue the Program/Erase command and pause the Program/Erase controller. During Program/Erase Suspend the Command Interface will accept the Program/Erase Resume, Read Array, Read Status Register, Read Electronic Signature and Read CFI Query commands. Additionally, if the suspend operation was Erase then the Program, Block Lock, Block Lock-Down or Protection Program commands will also be accepted. The block being erased may be protected by issuing the Block Protect, Block Lock or Protection Program commands. When the Program/ Erase Resume command is issued the operation will complete. Only the blocks not being erased may be read or programmed correctly. During a Program/Erase Suspend, the device can be placed in a pseudo-standby mode by taking Chip Enable to VIH. Program/Erase is aborted if Reset turns to VIL. See APPENDIX C., Figure 19., Program Suspend & Resume Flowchart and Pseudo Code, and Figure 21., Erase Suspend & Resume Flowchart and Pseudo Code, for flowcharts for using the Program/Erase Suspend command. Program/Erase Resume Command The Program/Erase Resume command can be used to restart the Program/Erase Controller after a Program/Erase Suspend operation has paused it. One Bus Write cycle is required to issue the command. Once the command is issued subsequent Bus Read operations read the Status Register. See APPENDIX C., Figure 19., Program Suspend & Resume Flowchart and Pseudo Code, and Figure 21., Erase Suspend & Resume Flowchart and Pseudo Code, for flowcharts for using the Program/Erase Resume command. Protection Register Program Command The Protection Register Program command is used to Program the 64 bit user One-Time-Programmable (OTP) segment of the Protection Register. The segment is programmed 16 bits at a time. When shipped all bits in the segment are set to `1'. The user can only program the bits to `0'. Two write cycles are required to issue the Protection Register Program command. The first bus cycle sets up the Protection Register Program command. The second latches the Address and the Data to be written to the Protection Register and starts the Program/Erase Controller. Read operations output the Status Register content after the programming has started. The segment can be protected by programming bit 1 of the Protection Lock Register. Bit 1 of the Protection Lock Register protects bit 2 of the Protection Lock Register. Programming bit 2 of the Protection Lock Register will result in a permanent protection of the Security Block (see Figure 6., Security Block and Protection Register Memory Map). Attempting to program a previously protected Protection Register will result in a Status
12/50
M28W160ECT, M28W160ECB
Register error. The protection of the Protection Register and/or the Security Block is not reversible. The Protection Register Program cannot be suspended. See APPENDIX C., Figure 23., Protection Register Program Flowchart and Pseudo Code, for the flowchart for using the Protection Register Program command. Block Lock Command The Block Lock command is used to lock a block and prevent Program or Erase operations from changing the data in it. All blocks are locked at power-up or reset. Two Bus Write cycles are required to issue the Block Lock command. The first bus cycle sets up the Block Lock command. The second Bus Write cycle latches the block address. The lock status can be monitored for each block using the Read Electronic Signature command. Table 9. shows the protection status after issuing a Block Lock command. The Block Lock bits are volatile, once set they remain set until a hardware reset or power-down/ power-up. They are cleared by a Blocks Unlock command. Refer to the section, Block Locking, for a detailed explanation. Block Unlock Command The Blocks Unlock command is used to unlock a block, allowing the block to be programmed or erased. Two Bus Write cycles are required to issue the Blocks Unlock command. The first bus cycle sets up the Block Unlock command. The second Bus Write cycle latches the block address. The lock status can be monitored for each block using the Read Electronic Signature command. Table 9. shows the protection status after issuing a Block Unlock command. Refer to the section, Block Locking, for a detailed explanation. Block Lock-Down Command A locked block cannot be Programmed or Erased, or have its protection status changed when WP is low, VIL. When WP is high, VIH, the Lock-Down function is disabled and the locked blocks can be individually unlocked by the Block Unlock command. Two Bus Write cycles are required to issue the Block Lock-Down command. The first bus cycle sets up the Block Lock command. The second Bus Write cycle latches the block address. The lock status can be monitored for each block using the Read Electronic Signature command. Locked-Down blocks revert to the locked (and not locked-down) state when the device is reset on power-down. Table 9. shows the protection status after issuing a Block Lock-Down command. Refer to the section, Block Locking, for a detailed explanation.
13/50
M28W160ECT, M28W160ECB
Table 3. Commands
Bus Write Operations Commands No. of Cycles 1st Cycle Bus Op.
Write Write Write Write Write Write Write Write Write Write Write Write Write Write
2nd Cycle Data
FFh 70h 90h 98h 20h 40h or 10h 30h 50h B0h D0h 60h 60h 60h C0h Write Write Write Write
3nd Cycle Data
Data Status Register
Addr
X X X X X X X X X X X X X X
Bus Op.
Read Read Read Read Write Write Write
Addr
Read Addr X
Bus Op.
Addr
Data
Read Memory Array Read Status Register Read Electronic Signature Read CFI Query Erase Program Double Word Program(3) Clear Status Register Program/Erase Suspend Program/Erase Resume Block Lock Block Unlock Block Lock-Down Protection Register Program
1+ 1+ 1+ 1+ 2 2 3 1 1 1 2 2 2 2
Signature Signature Addr (2) CFI Addr Block Addr Addr Addr 1 Query D0h Data Input Data Input Write Addr 2 Data Input
Block Address Block Address Block Address Address
01h D0h 2Fh Data Input
Note: 1. X = Don't Care. 2. The signature addresses are listed in Tables 4, 5 and 6. 3. Addr 1 and Addr 2 must be consecutive Addresses differing only for A0.
Table 4. Read Electronic Signature
Code Manufacture. Code M28W160ECT Device Code M28W160ECB
Note: RP = VIH.
Device
E VIL VIL VIL
G VIL VIL VIL
W VIH VIH VIH
A0 VIL VIH VIH
A1 VIL VIL VIL
A2-A7 0 0 0
A8-A19 Don't Care Don't Care Don't Care
DQ0-DQ7 20h CEh CFh
DQ8-DQ15 00h 88h 88h
14/50
M28W160ECT, M28W160ECB
Table 5. Read Block Lock Signature
Block Status Locked Block Unlocked Block Locked-Down Block E VIL VIL VIL G VIL VIL VIL W VIH VIH VIH A0 VIL VIL VIL A1 VIH VIH VIH A2-A7 0 0 0 A8-A11 A12-A19 DQ0 1 0 X (1) DQ1 0 0 1 DQ2-DQ15 00h 00h 00h Don't Care Block Address Don't Care Block Address Don't Care Block Address
Note: 1. A Locked-Down Block can be locked "DQ0 = 1" or unlocked "DQ0 = 0"; see Block Locking section.
Table 6. Read Protection Register and Lock Register
Word Lock Unique ID 0 Unique ID 1 Unique ID 2 Unique ID 3 OTP 0 OTP 1 OTP 2 OTP 3 E VIL VIL VIL VIL VIL VIL VIL VIL VIL G VIL VIL VIL VIL VIL VIL VIL VIL VIL W VIH VIH VIH VIH VIH VIH VIH VIH VIH A0-A7 80h 81h 82h 83h 84h 85h 86h 87h 88h A8-A19 Don't Care Don't Care Don't Care Don't Care Don't Care Don't Care Don't Care Don't Care Don't Care DQ0 0 ID data ID data ID data ID data OTP data OTP data OTP data OTP data DQ1 OTP Prot. data ID data ID data ID data ID data OTP data OTP data OTP data OTP data DQ2 Security prot. data ID data ID data ID data ID data OTP data OTP data OTP data OTP data DQ3-DQ7 DQ8-DQ15 00h ID data ID data ID data ID data OTP data OTP data OTP data OTP data 00h ID data ID data ID data ID data OTP data OTP data OTP data OTP data
Table 7. Program, Erase Times and Program/Erase Endurance Cycles
Parameter(2) Word Program Double Word Program Main Block Program VPP = VDD VPP = 12V 5% Parameter Block Program VPP = VDD VPP = 12V 5% Main Block Erase VPP = VDD VPP = 12V 5% Parameter Block Erase VPP = VDD Program/Erase Cycles (per Block)
Note: 1. Typical values measured at ambient operating temperature, TA. 2. All the parameters have been sampled only, not 100% tested.
M28W160EC Test Conditions Min VPP = VDD VPP = 12V 5% VPP = 12V 5% Typ(1) 10 10 0.16 0.32 0.02 0.04 1 1 0.4 0.4 100,000 Max 200 200 5 5 4 4 5 5 4 4 s s s s s s s s s s cycles Unit
15/50
M28W160ECT, M28W160ECB
BLOCK LOCKING
The M28W160EC features an instant, individual block locking scheme that allows any block to be locked or unlocked with no latency. This locking scheme has three levels of protection. Lock/Unlock - this first level allows softwareonly control of block locking. Lock-Down - this second level requires hardware interaction before locking can be changed. VPP VPPLK - the third level offers a complete hardware protection against program and erase on all blocks. The lock status of each block can be set to Locked, Unlocked, and Lock-Down. Table 9., defines all of the possible protection states (WP, DQ1, DQ0), and APPENDIX C., Figure 22., shows a flowchart for the locking operations. Reading a Block's Lock Status The lock status of every block can be read in the Read Electronic Signature mode of the device. To enter this mode write 90h to the device. Subsequent reads at the address specified in Table 5., will output the lock status of that block. The lock status is represented by DQ0 and DQ1. DQ0 indicates the Block Lock/Unlock status and is set by the Lock command and cleared by the Unlock command. It is also automatically set when entering Lock-Down. DQ1 indicates the Lock-Down status and is set by the Lock-Down command. It cannot be cleared by software, only by a hardware reset or power-down. The following sections explain the operation of the locking system. Locked State The default status of all blocks on power-up or after a hardware reset is Locked (states (0,0,1) or (1,0,1)). Locked blocks are fully protected from any program or erase. Any program or erase operations attempted on a locked block will return an error in the Status Register. The Status of a Locked block can be changed to Unlocked or Lock-Down using the appropriate software commands. An Unlocked block can be Locked by issuing the Lock command. Unlocked State Unlocked blocks (states (0,0,0), (1,0,0) (1,1,0)), can be programmed or erased. All unlocked blocks return to the Locked state after a hardware reset or when the device is powered-down. The status of an unlocked block can be changed to Locked or Locked-Down using the appropriate software commands. A locked block can be unlocked by issuing the Unlock command. Lock-Down State Blocks that are Locked-Down (state (0,1,x))are protected from program and erase operations (as for Locked blocks) but their lock status cannot be changed using software commands alone. A Locked or Unlocked block can be Locked-Down by issuing the Lock-Down command. Locked-Down blocks revert to the Locked state when the device is reset or powered-down. The Lock-Down function is dependent on the WP input pin. When WP=0 (VIL), the blocks in the Lock-Down state (0,1,x) are protected from program, erase and protection status changes. When WP=1 (VIH) the Lock-Down function is disabled (1,1,1) and Locked-Down blocks can be individually unlocked to the (1,1,0) state by issuing the software command, where they can be erased and programmed. These blocks can then be locked again (1,1,1) and unlocked (1,1,0) as desired while WP remains high. When WP is low, blocks that were previously Locked-Down return to the LockDown state (0,1,x) regardless of any changes made while WP was high. Device reset or powerdown resets all blocks, including those in LockDown, to the Locked state. Locking Operations During Erase Suspend Changes to block lock status can be performed during an erase suspend by using the standard locking command sequences to unlock, lock or lock-down a block. This is useful in the case when another block needs to be updated while an erase operation is in progress. To change block locking during an erase operation, first write the Erase Suspend command, then check the status register until it indicates that the erase operation has been suspended. Next write the desired Lock command sequence to a block and the protection status will be changed. After completing any desired lock, read, or program operations, resume the erase operation with the Erase Resume command. If a block is locked or locked-down during an erase suspend of the same block, the locking status bits will be changed immediately, but when the erase is resumed, the erase operation will complete. Locking operations cannot be performed during a program suspend. Refer to APPENDIX D., COMMAND INTERFACE AND PROGRAM/ ERASE CONTROLLER STATE, for detailed information on which commands are valid during erase suspend.
16/50
M28W160ECT, M28W160ECB
Table 8. Block Lock Status
Item Block Lock Configuration Block is Unlocked xx002 Block is Locked Block is Locked-Down DQ0=1 DQ1=1 Address Data LOCK DQ0=0
Table 9. Protection Status
Current Protection Status(1) (WP, DQ1, DQ0) Current State 1,0,0 1,0,1(2) 1,1,0 1,1,1 0,0,0 0,0,1(2) 0,1,1 Program/Erase Allowed yes no yes no yes no no After Block Lock Command 1,0,1 1,0,1 1,1,1 1,1,1 0,0,1 0,0,1 0,1,1 Next Protection Status(1) (WP, DQ1, DQ0) After Block Unlock Command 1,0,0 1,0,0 1,1,0 1,1,0 0,0,0 0,0,0 0,1,1 After Block Lock-Down Command 1,1,1 1,1,1 1,1,1 1,1,1 0,1,1 0,1,1 0,1,1 After WP transition 0,0,0 0,0,1 0,1,1 0,1,1 1,0,0 1,0,1 1,1,1 or 1,1,0 (3)
Note: 1. The protection status is defined by the write protect pin and by DQ1 (`1' for a locked-down block) and DQ0 (`1' for a locked block) as read in the Read Electronic Signature command with A1 = VIH and A0 = VIL. 2. All blocks are locked at power-up, so the default configuration is 001 or 101 according to WP status. 3. A WP transition to VIH on a locked block will restore the previous DQ0 value, giving a 111 or 110.
17/50
M28W160ECT, M28W160ECB
STATUS REGISTER
The Status Register provides information on the current or previous Program or Erase operation. The various bits convey information and errors on the operation. To read the Status register the Read Status Register command can be issued, refer to Read Status Register Command section. To output the contents, the Status Register is latched on the falling edge of the Chip Enable or Output Enable signals, and can be read until Chip Enable or Output Enable returns to VIH. Either Chip Enable or Output Enable must be toggled to update the latched data. Bus Read operations from any address always read the Status Register during Program and Erase operations. The bits in the Status Register are summarized in Table 10., Status Register Bits. Refer to Table 10. in conjunction with the following text descriptions. Program/Erase Controller Status (Bit 7). The Program/Erase Controller Status bit indicates whether the Program/Erase Controller is active or inactive. When the Program/Erase Controller Status bit is Low (set to `0'), the Program/Erase Controller is active; when the bit is High (set to `1'), the Program/Erase Controller is inactive, and the device is ready to process a new command. The Program/Erase Controller Status is Low immediately after a Program/Erase Suspend command is issued until the Program/Erase Controller pauses. After the Program/Erase Controller pauses the bit is High. During Program, Erase, operations the Program/ Erase Controller Status bit can be polled to find the end of the operation. Other bits in the Status Register should not be tested until the Program/Erase Controller completes the operation and the bit is High. After the Program/Erase Controller completes its operation the Erase Status, Program Status, VPP Status and Block Lock Status bits should be tested for errors. Erase Suspend Status (Bit 6). The Erase Suspend Status bit indicates that an Erase operation has been suspended or is going to be suspended. When the Erase Suspend Status bit is High (set to `1'), a Program/Erase Suspend command has been issued and the memory is waiting for a Program/Erase Resume command. The Erase Suspend Status should only be considered valid when the Program/Erase Controller Status bit is High (Program/Erase Controller inactive). Bit 7 is set within 30s of the Program/Erase Suspend command being issued therefore the memory may still complete the operation rather than entering the Suspend mode. When a Program/Erase Resume command is issued the Erase Suspend Status bit returns Low. Erase Status (Bit 5). The Erase Status bit can be used to identify if the memory has failed to verify that the block has erased correctly. When the Erase Status bit is High (set to `1'), the Program/ Erase Controller has applied the maximum number of pulses to the block and still failed to verify that the block has erased correctly. The Erase Status bit should be read once the Program/Erase Controller Status bit is High (Program/Erase Controller inactive). Once set High, the Erase Status bit can only be reset Low by a Clear Status Register command or a hardware reset. If set High it should be reset before a new Program or Erase command is issued, otherwise the new command will appear to fail. Program Status (Bit 4). The Program Status bit is used to identify a Program failure. When the Program Status bit is High (set to `1'), the Program/Erase Controller has applied the maximum number of pulses to the byte and still failed to verify that it has programmed correctly. The Program Status bit should be read once the Program/Erase Controller Status bit is High (Program/Erase Controller inactive). Once set High, the Program Status bit can only be reset Low by a Clear Status Register command or a hardware reset. If set High it should be reset before a new command is issued, otherwise the new command will appear to fail. VPP Status (Bit 3). The VPP Status bit can be used to identify an invalid voltage on the VPP pin during Program and Erase operations. The VPP pin is only sampled at the beginning of a Program or Erase operation. Indeterminate results can occur if VPP becomes invalid during an operation. When the VPP Status bit is Low (set to `0'), the voltage on the VPP pin was sampled at a valid voltage; when the VPP Status bit is High (set to `1'), the VPP pin has a voltage that is below the VPP Lockout Voltage, VPPLK, the memory is protected and Program and Erase operations cannot be performed. Once set High, the VPP Status bit can only be reset Low by a Clear Status Register command or a hardware reset. If set High it should be reset before a new Program or Erase command is issued, otherwise the new command will appear to fail. Program Suspend Status (Bit 2). The Program Suspend Status bit indicates that a Program operation has been suspended. When the Program Suspend Status bit is High (set to `1'), a Program/ Erase Suspend command has been issued and the memory is waiting for a Program/Erase Resume command. The Program Suspend Status should only be considered valid when the Pro-
18/50
M28W160ECT, M28W160ECB
gram/Erase Controller Status bit is High (Program/ Erase Controller inactive). Bit 2 is set within 5s of the Program/Erase Suspend command being issued therefore the memory may still complete the operation rather than entering the Suspend mode. When a Program/Erase Resume command is issued the Program Suspend Status bit returns Low. Block Protection Status (Bit 1). The Block Protection Status bit can be used to identify if a Program or Erase operation has tried to modify the contents of a locked block. When the Block Protection Status bit is High (set to `1'), a Program or Erase operation has been attempted on a locked block. Once set High, the Block Protection Status bit can only be reset Low by a Clear Status Register command or a hardware reset. If set High it should be reset before a new command is issued, otherwise the new command will appear to fail. Reserved (Bit 0). Bit 0 of the Status Register is reserved. Its value must be masked. Note: Refer to APPENDIX C., Flowcharts and Pseudo Codes, for using the Status Register.
Table 10. Status Register Bits
Bit 7 Name P/E.C. Status '0' '1' 6 Erase Suspend Status '0' '1' 5 Erase Status '0' '1' 4 Program Status '0' '1' 3 VPP Status '0' '1' 2 Program Suspend Status '0' '1' 1 0 Block Protection Status '0' Reserved No operation to protected blocks In Progress or Completed Program/Erase on protected Block, Abort Program Success VPP Invalid, Abort VPP OK Suspended Erase Success Program Error In progress or Completed Erase Error Busy Suspended Logic Level '1' Ready Definition
Note: Logic level '1' is High, '0' is Low.
19/50
M28W160ECT, M28W160ECB
MAXIMUM RATING
Stressing the device above the rating listed in the Absolute Maximum Ratings table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Table 11. Absolute Maximum Ratings
Value Symbol TA TBIAS TSTG VIO VDD, VDDQ VPP Parameter Min Ambient Operating Temperature (1) Temperature Under Bias Storage Temperature Input or Output Voltage Supply Voltage Program Voltage - 40 - 40 - 55 - 0.6 - 0.6 - 0.6 Max 85 125 155 VDDQ+0.6 4.1 13 C C C V V V Unit
Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the Numonyx SURE Program and other relevant quality documents.
Note: 1. Depending on range.
20/50
M28W160ECT, M28W160ECB
DC AND AC PARAMETERS
This section summarizes the operating and measurement conditions, and the DC and AC characteristics of the device. The parameters in the DC and AC characteristics Tables that follow, are derived from tests performed under the Measurement Conditions summarized in Table 12., Operating and AC Measurement Conditions. Designers should check that the operating conditions in their circuit match the measurement conditions when relying on the quoted parameters.
Table 12. Operating and AC Measurement Conditions
M28W160ECT, M28W160ECB Parameter Min VDD Supply Voltage VDDQ Supply Voltage (VDDQ VDD) Ambient Operating Temperature Load Capacitance (CL) Input Rise and Fall Times Input Pulse Voltages Input and Output Timing Ref. Voltages 2.7 2.7 - 40 50 5 0 to VDDQ VDDQ/2 70 Max 3.6 3.6 85 Min 2.7 2.7 - 40 50 5 0 to VDDQ VDDQ/2 85 Max 3.6 3.6 85 Min 2.7 2.7 - 40 50 5 0 to VDDQ VDDQ/2 90 Max 3.6 3.6 85 Min 2.7 1.65 - 40 50 5 0 to VDDQ VDDQ/2 100 Max 3.6 3.6 85 V V C pF ns V V Units
Figure 7. AC Measurement I/O Waveform
Figure 8. AC Measurement Load Circuit
VDDQ
VDDQ VDDQ/2 0V
AI00610
VDDQ VDD 25k DEVICE UNDER TEST 0.1F 0.1F CL 25k
CL includes JIG capacitance
AI00609C
Table 13. Capacitance
Symbol CIN COUT Parameter Input Capacitance Output Capacitance Test Condition VIN = 0V VOUT = 0V Min Max 6 12 Unit pF pF
Note: Sampled only, not 100% tested.
21/50
M28W160ECT, M28W160ECB
Table 14. DC Characteristics
Symbol ILI ILO IDD IDD1 IDD2 Parameter Input Leakage Current Output Leakage Current Supply Current (Read) Supply Current (Stand-by or Automatic Stand-by) Supply Current (Reset) Test Condition 0VVIN VDDQ 0VVOUT DDQ V E = VSS, G = VIH, f = 5MHz E = VDDQ 0.2V, RP = VDDQ 0.2V RP = VSS 0.2V Program in progress VPP = 12V 5% Program in progress VPP = VDD Erase in progress VPP = 12V 5% Erase in progress VPP = VDD E = VDDQ 0.2V, Erase suspended VPP > VDD VPP VDD RP = VSS 0.2V Program in progress VPP = 12V 5% Program in progress VPP = VDD Erase in progress VPP = 12V 5% Erase in progress VPP = VDD -0.5 VDDQ 2.7V VDDQ 2.7V IOL = 100A, VDD = VDD min, VDDQ = VDDQ min IOH = -100A, VDD = VDD min, VDDQ = VDDQ min VDDQ -0.1 1.65 11.4 3.6 12.6 1 2 -0.5 VDDQ -0.4 0.7 VDDQ 1 1 1 1 3 1 9 15 15 5 10 5 10 15 Min Typ Max 1 10 18 50 50 10 20 20 20 50 400 5 5 10 5 10 5 0.4 0.8 VDDQ +0.4 VDDQ +0.4 0.1 Unit A A mA A A mA mA mA mA A A A A mA A mA A V V V V V V V V V V
IDD3
Supply Current (Program)
IDD4
Supply Current (Erase)
IDD5 IPP IPP1 IPP2
Supply Current (Program/Erase Suspend) Program Current (Read or Stand-by) Program Current (Read or Stand-by) Program Current (Reset)
IPP3
Program Current (Program)
IPP4
Program Current (Erase)
VIL VIH VOL VOH VPP1 VPPH VPPLK VLKO
Input Low Voltage Input High Voltage Output Low Voltage Output High Voltage Program Voltage (Program or Erase operations) Program Voltage (Program or Erase operations) Program Voltage (Program and Erase lock-out) VDD Supply Voltage (Program and Erase lock-out)
22/50
M28W160ECT, M28W160ECB
Figure 9. Read Mode AC Waveforms
tAVAV A0-A19 tAVQV E tELQV tELQX G tGLQV tGLQX DQ0-DQ15 VALID tGHQX tGHQZ tEHQX tEHQZ VALID tAXQX
ADDR. VALID CHIP ENABLE
OUTPUTS ENABLED
DATA VALID
STANDBY
AI03813b
Table 15. Read AC Characteristics
M28W160EC Symbol tAVAV tAVQV tAXQX (1) tEHQX (1) tEHQZ (1) tELQV (2) tELQX (1) tGHQX (1) tGHQZ (1) tGLQV (2) tGLQX (1) Alt tRC tACC tOH tOH tHZ tCE tLZ tOH tDF tOE tOLZ Parameter 70 Address Valid to Next Address Valid Address Valid to Output Valid Address Transition to Output Transition Chip Enable High to Output Transition Chip Enable High to Output Hi-Z Chip Enable Low to Output Valid Chip Enable Low to Output Transition Output Enable High to Output Transition Output Enable High to Output Hi-Z Output Enable Low to Output Valid Output Enable Low to Output Transition Min Max Min Min Max Max Min Min Max Max Min 70 70 0 0 20 70 0 0 20 20 0 85 85 85 0 0 20 85 0 0 20 20 0 90 90 90 0 0 25 90 0 0 25 30 0 100 100 100 0 0 30 100 0 0 30 35 0 ns ns ns ns ns ns ns ns ns ns ns Unit
Note: 1. Sampled only, not 100% tested. 2. G may be delayed by up to tELQV - tGLQV after the falling edge of E without increasing tELQV.
23/50
24/50
PROGRAM OR ERASE tAVAV VALID tAVWH tWHAX tWHEH tWHWL tWHGL tWLWH tWHEL tWHDX COMMAND CMD or DATA STATUS REGISTER tELQV tWPHWH tQVWPL tVPHWH tQVVPL CONFIRM COMMAND OR DATA INPUT STATUS REGISTER READ 1st POLLING
AI03814b
A0-A19
E
M28W160ECT, M28W160ECB
tELWL
G
W
tDVWH
Figure 10. Write AC Waveforms, Write Enable Controlled
DQ0-DQ15
WP
VPP
SET-UP COMMAND
M28W160ECT, M28W160ECB
Table 16. Write AC Characteristics, Write Enable Controlled
M28W160EC Symbol tAVAV tAVWH tDVWH tELWL tELQV tQVVPL (1,2) tQVWPL tVPHWH (1) tWHAX tWHDX tWHEH tWHEL tWHGL tWHWL tWLWH tWPHWH tWPH tWP tVPS tAH tDH tCH Alt tWC tAS tDS tCS Write Cycle Time Address Valid to Write Enable High Data Valid to Write Enable High Chip Enable Low to Write Enable Low Chip Enable Low to Output Valid Output Valid to VPP Low Output Valid to Write Protect Low VPP High to Write Enable High Write Enable High to Address Transition Write Enable High to Data Transition Write Enable High to Chip Enable High Write Enable High to Chip Enable Low Write Enable High to Output Enable Low Write Enable High to Write Enable Low Write Enable Low to Write Enable High Write Protect High to Write Enable High Parameter 70 Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min 70 45 45 0 70 0 0 200 0 0 0 25 20 25 45 45 85 85 45 45 0 85 0 0 200 0 0 0 25 20 25 45 45 90 90 50 50 0 90 0 0 200 0 0 0 30 30 30 50 50 100 100 50 50 0 100 0 0 200 0 0 0 30 30 30 50 50 ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns Unit
Note: 1. Sampled only, not 100% tested. 2. Applicable if VPP is seen as a logic input (VPP < 3.6V).
25/50
26/50
PROGRAM OR ERASE tAVAV VALID tAVEH tEHAX tEHWH tEHEL tEHGL tELEH tEHDX COMMAND tWPHEH CMD or DATA STATUS REGISTER tQVWPL tELQV tVPHEH tQVVPL CONFIRM COMMAND OR DATA INPUT STATUS REGISTER READ 1st POLLING
AI03815b
A0-A19
W
M28W160ECT, M28W160ECB
tWLEL
G
E
tDVEH
Figure 11. Write AC Waveforms, Chip Enable Controlled
DQ0-DQ15
WP
VPP
POWER-UP AND SET-UP COMMAND
M28W160ECT, M28W160ECB
Table 17. Write AC Characteristics, Chip Enable Controlled
M28W160EC Symbol tAVAV tAVEH tDVEH tEHAX tEHDX tEHEL tEHGL tEHWH tELEH tELQV tQVVPL (1,2) tQVWPL tVPHEH (1) tWLEL tWPHEH tVPS tCS tWH tCP Alt tWC tAS tDS tAH tDH tCPH Write Cycle Time Address Valid to Chip Enable High Data Valid to Chip Enable High Chip Enable High to Address Transition Chip Enable High to Data Transition Chip Enable High to Chip Enable Low Chip Enable High to Output Enable Low Chip Enable High to Write Enable High Chip Enable Low to Chip Enable High Chip Enable Low to Output Valid Output Valid to VPP Low Data Valid to Write Protect Low VPP High to Chip Enable High Write Enable Low to Chip Enable Low Write Protect High to Chip Enable High Parameter 70 Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min 70 45 45 0 0 25 25 0 45 70 0 0 200 0 45 85 85 45 45 0 0 25 25 0 45 85 0 0 200 0 45 90 90 50 50 0 0 30 30 0 50 90 0 0 200 0 50 100 100 50 50 0 0 30 30 0 50 100 0 0 200 0 50 ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns Unit
Note: 1. Sampled only, not 100% tested. 2. Applicable if VPP is seen as a logic input (VPP < 3.6V).
27/50
M28W160ECT, M28W160ECB
Figure 12. Power-Up and Reset AC Waveforms
W, E, G
tPHWL tPHEL tPHGL
tPHWL tPHEL tPHGL
RP tVDHPH VDD, VDDQ Power-Up Reset
AI03537b
tPLPH
Table 18. Power-Up and Reset AC Characteristics
M28W160EC Symbol Parameter Test Condition 70 tPHWL tPHEL tPHGL tPLPH(1,2) tVDHPH(3) During Program and Erase others Reset Low to Reset High Supply Voltages High to Reset High Min Min Min Min 50 30 100 50 85 50 30 100 50 90 50 30 100 50 100 50 30 100 50 s ns ns s Unit
Reset High to Write Enable Low, Chip Enable Low, Output Enable Low
Note: 1. The device Reset is possible but not guaranteed if tPLPH < 100ns. 2. Sampled only, not 100% tested. 3. It is important to assert RP in order to allow proper CPU initialization during power up or reset.
28/50
M28W160ECT, M28W160ECB
PACKAGE MECHANICAL
Figure 13. TSOP48 - 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Outline
1
48
e
D1
B
24
25
L1 A2 A
E1 E
DIE
A1 C CP
L
TSOP-G
Note: Drawing is not to scale.
Table 19. TSOP48 - 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Mechanical Data
millimeters Symbol Typ A A1 A2 B C CP D1 E E1 e L L1 a 12.000 20.000 18.400 0.500 0.600 0.800 3 0 5 11.900 19.800 18.300 - 0.500 0.100 1.000 0.220 0.050 0.950 0.170 0.100 Min Max 1.200 0.150 1.050 0.270 0.210 0.100 12.100 20.200 18.500 - 0.700 0.4724 0.7874 0.7244 0.0197 0.0236 0.0315 3 0 5 0.4685 0.7795 0.7205 - 0.0197 0.0039 0.0394 0.0087 0.0020 0.0374 0.0067 0.0039 Typ Min Max 0.0472 0.0059 0.0413 0.0106 0.0083 0.0039 0.4764 0.7953 0.7283 - 0.0276 inches
29/50
M28W160ECT, M28W160ECB
Figure 14. TFBGA46 6.39x6.37mm - 8x6 ball array, 0.75mm pitch, Bottom View Package Outline
D FD D1 SD
FE SE E E1 e ddd BALL "A1"
e A
b A2 A1
BGA-Z13
Drawing is not to scale.
Table 20. TFBGA46 6.39x6.37mm - 8x6 ball array, 0.75mm pitch, Package Mechanical Data
millimeters Symbol Typ A A1 A2 b D D1 ddd E e E1 FD FE SD SE 6.370 0.750 3.750 0.570 1.310 0.375 0.375 6.270 - - - - - - 0.400 6.390 5.250 0.350 6.290 - 0.200 1.000 0.450 6.490 - 0.100 6.470 - - - - - - 0.2508 0.0295 0.1476 0.0224 0.0516 0.0148 0.0148 0.2469 - - - - - - 0.0157 0.2516 0.2067 0.0138 0.2476 - Min Max 1.200 0.0079 0.0394 0.0177 0.2555 - 0.0039 0.2547 - - - - - - Typ Min Max 0.0472 inches
30/50
M28W160ECT, M28W160ECB
Figure 15. TFBGA46 Daisy Chain - Package Connections (Top view through package)
1 2 3 4 5 6 7 8
A
B
C
D
E
F
AI03298
Figure 16. TFBGA46 Daisy Chain - PCB Connections proposal (Top view through package)
1 2 3 4 5 6 7 8
A
START POINT
B
C
D
E
F
END POINT
AI3299
31/50
M28W160ECT, M28W160ECB
PART NUMBERING
Table 21. Ordering Information Scheme
Example: Device Type M28 Operating Voltage W = VDD = 2.7V to 3.6V; VDDQ = 1.65V to 3.6V Device Function 160EC = 16 Mbit (1 Mb x16), Boot Block Array Matrix T = Top Boot B = Bottom Boot Speed 70 = 70 ns 85 = 85 ns 90 = 90 ns 100 = 100 ns Package N = TSOP48: 12 x 20 mm ZB = TFBGA46: 6.39 x 6.37mm, 0.75 mm pitch Temperature Range 1 = 0 to 70 C 6 = -40 to 85 C Option Blank = Standard Packing T = Tape & Reel Packing S = Tape & Reel Packing, 16mm (BGA only) E = ECOPACK Package, Standard Packing F = ECOPACK Package, Tape & Reel Packing U = ECOPACK Package, 16mm Tape & Reel Packing (BGA only) M28W160ECT 90 N 6 T
32/50
M28W160ECT, M28W160ECB
Table 22. Daisy Chain Ordering Scheme
Example: Device Type M28W160EC Daisy Chain -ZB = TFBGA46: 6.39 x 6.37mm, 0.75 mm pitch Option T = Tape & Reel Packing S = Tape & Reel Packing, 16mm (BGA only) M28W160EC -ZB T
Devices are shipped from the factory with the memory content bits erased to '1'. For a list of available options (Speed, Package, etc.) or for further information on any aspect of this device, please contact the Numonyx Sales Office nearest to you.
33/50
M28W160ECT, M28W160ECB
APPENDIX A. BLOCK ADDRESS TABLES
Table 23. Top Boot Block Addresses, M28W160ECT
# 0 1 2 3 4 5 6 7 8 99 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 Size (KWord) 4 4 4 4 4 4 4 4 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 Address Range FF000-FFFFF FE000-FEFFF FD000-FDFFF FC000-FCFFF FB000-FBFFF FA000-FAFFF F9000-F9FFF F8000-F8FFF F0000-F7FFF E8000-EFFFF E0000-E7FFF D8000-DFFFF D0000-D7FFF C8000-CFFFF C0000-C7FFF B8000-BFFFF B0000-B7FFF A8000-AFFFF A0000-A7FFF 98000-9FFFF 90000-97FFF 88000-8FFFF 80000-87FFF 78000-7FFFF 70000-77FFF 68000-6FFFF 60000-67FFF 58000-5FFFF 50000-57FFF 48000-4FFFF 40000-47FFF 38000-3FFFF 30000-37FFF 28000-2FFFF 20000-27FFF 18000-1FFFF 10000-17FFF 08000-0FFFF 00000-07FFF
Table 24. Bottom Boot Block Addresses, M28W160ECB
# 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Size (KWord) 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 4 4 4 4 4 4 4 4 Address Range F8000-FFFFF F0000-F7FFF E8000-EFFFF E0000-E7FFF D8000-DFFFF D0000-D7FFF C8000-CFFFF C0000-C7FFF B8000-BFFFF B0000-B7FFF A8000-AFFFF A0000-A7FFF 98000-9FFFF 90000-97FFF 88000-8FFFF 80000-87FFF 78000-7FFFF 70000-77FFF 68000-6FFFF 60000-67FFF 58000-5FFFF 50000-57FFF 48000-4FFFF 40000-47FFF 38000-3FFFF 30000-37FFF 28000-2FFFF 20000-27FFF 18000-1FFFF 10000-17FFF 08000-0FFFF 07000-07FFF 06000-06FFF 05000-05FFF 04000-04FFF 03000-03FFF 02000-02FFF 01000-01FFF 00000-00FFF
34/50
M28W160ECT, M28W160ECB
APPENDIX B. COMMON FLASH INTERFACE (CFI)
The Common Flash Interface is a JEDEC approved, standardized data structure that can be read from the Flash memory device. It allows a system software to query the device to determine various electrical and timing parameters, density information and functions supported by the memory. The system can interface easily with the device, enabling the software to upgrade itself when necessary. When the CFI Query Command (RCFI) is issued the device enters CFI Query mode and the data Table 25. Query Structure Overview
Offset 00h 10h 1Bh 27h P A Reserved CFI Query Identification String System Interface Information Device Geometry Definition Primary Algorithm-specific Extended Query table Alternate Algorithm-specific Extended Query table Sub-section Name Description Reserved for algorithm-specific information Command set ID and algorithm data offset Device timing & voltage information Flash device layout Additional information specific to the Primary Algorithm (optional) Additional information specific to the Alternate Algorithm (optional)
structure is read from the memory. Tables 25, 26, 27, 28, 29 and 30 show the addresses used to retrieve the data. The CFI data structure also contains a security area where a 64 bit unique security number is written (see Table 30., Security Code Area). This area can be accessed only in Read mode by the final user. It is impossible to change the security number after it has been written by Numonyx. Issue a Read command to return to Read mode.
Note: Query data are always presented on the lowest order data outputs.
Table 26. CFI Query Identification String
Offset 00h 01h 02h-0Fh 10h 11h 12h 13h 14h 15h 16h 17h 18h 19h 1Ah Data 0020h 88CEh 88CFh reserved 0051h 0052h 0059h 0003h 0000h 0035h Address for Primary Algorithm extended Query table (see Table 28.) 0000h 0000h 0000h 0000h 0000h Alternate Vendor Command Set and Control Interface ID Code second vendor specified algorithm supported (0000h means none exists) Address for Alternate Algorithm extended Query table (0000h means none exists) NA P = 35h Primary Algorithm Command Set and Control Interface ID code 16 bit ID code defining a specific algorithm Query Unique ASCII String "QRY" Manufacturer Code Device Code Reserved "Q" "R" "Y" Intel compatible Description Value Numonyx Top Bottom
NA
Note: Query data are always presented on the lowest order data outputs (DQ7-DQ0) only. DQ8-DQ15 are `0'.
35/50
M28W160ECT, M28W160ECB
Table 27. CFI Query System Interface Information
Offset 1Bh Data 0027h Description VDD Logic Supply Minimum Program/Erase or Write voltage bit 7 to 4BCD value in volts bit 3 to 0BCD value in 100 mV VDD Logic Supply Maximum Program/Erase or Write voltage bit 7 to 4BCD value in volts bit 3 to 0BCD value in 100 mV VPP [Programming] Supply Minimum Program/Erase voltage bit 7 to 4HEX value in volts bit 3 to 0BCD value in 100 mV VPP [Programming] Supply Maximum Program/Erase voltage bit 7 to 4HEX value in volts bit 3 to 0BCD value in 100 mV Typical time-out per single word program = 2n s Typical time-out for Double Word Program = 2n s Typical time-out per individual block erase = 2n ms Typical time-out for full chip erase = 2n ms Maximum time-out for word program = 2n times typical Maximum time-out for Double Word Program = 2n times typical Maximum time-out per individual block erase = 2n times typical Maximum time-out for chip erase = 2n times typical Value 2.7V
1Ch
0036h
3.6V
1Dh
00B4h
11.4V
1Eh 1Fh 20h 21h 22h 23h 24h 25h 26h
00C6h 0004h 0004h 000Ah 0000h 0005h 0005h 0003h 0000h
12.6V 16s 16s 1s NA 512s 512s 8s NA
36/50
M28W160ECT, M28W160ECB
Table 28. Device Geometry Definition
Offset Word Mode 27h 28h 29h 2Ah 2Bh 2Ch 2Dh 2Eh M28W160ECT 2Fh 30h 31h 32h 33h 34h 2Dh 2Eh M28W160ECB 2Fh 30h 31h 32h 33h 34h Data 0015h 0001h 0000h 0002h 0000h 0002h 001Eh 0000h 0000h 0001h 0007h 0000h 0020h 0000h 0007h 0000h 0020h 0000h 001Eh 0000h 0000h 0001h Description Device Size = 2n in number of bytes Flash Device Interface Code description Maximum number of bytes in multi-byte program or page = 2n Number of Erase Block Regions within the device. It specifies the number of regions within the device containing contiguous Erase Blocks of the same size. Region 1 Information Number of identical-size erase block = 001Eh+1 Region 1 Information Block size in Region 1 = 0100h * 256 byte Region 2 Information Number of identical-size erase block = 0007h+1 Region 2 Information Block size in Region 2 = 0020h * 256 byte Region 1 Information Number of identical-size erase block = 0007h+1 Region 1 Information Block size in Region 1 = 0020h * 256 byte Region 2 Information Number of identical-size erase block = 001Eh+1 Region 2 Information Block size in Region 2 = 0100h * 256 byte Value 2 MByte x16 Async. 4
2
31 64 KByte 8 8 KByte 8 8 KByte 31 64 KByte
37/50
M28W160ECT, M28W160ECB
Table 29. Primary Algorithm-Specific Extended Query Table
Offset P = 35h (1) (P+0)h = 35h (P+1)h = 36h (P+2)h = 37h (P+3)h = 38h (P+4)h = 39h (P+5)h = 3Ah (P+6)h = 3Bh (P+7)h = 3Ch (P+8)h = 3Dh Data 0050h 0052h 0049h 0031h 0030h 0066h 0000h 0000h 0000h Major version number, ASCII Minor version number, ASCII Extended Query table contents for Primary Algorithm. Address (P+5)h contains less significant byte. bit 0Chip Erase supported(1 = Yes, 0 = No) bit 1Suspend Erase supported(1 = Yes, 0 = No) bit 2Suspend Program supported(1 = Yes, 0 = No) bit 3Legacy Lock/Unlock supported(1 = Yes, 0 = No) bit 4Queued Erase supported(1 = Yes, 0 = No) bit 5Instant individual block locking supported(1 = Yes, 0 = No) bit 6Protection bits supported(1 = Yes, 0 = No) bit 7Page mode read supported(1 = Yes, 0 = No) bit 8Synchronous read supported(1 = Yes, 0 = No) bit 31 to 9Reserved; undefined bits are `0' Supported Functions after Suspend Read Array, Read Status Register and CFI Query are always supported during Erase or Program operation bit 0Program supported after Erase Suspend (1 = Yes, 0 = No) bit 7 to 1Reserved; undefined bits are `0' Block Lock Status Defines which bits in the Block Status Register section of the Query are implemented. Address (P+A)h contains less significant byte bit 0Block Lock Status Register Lock/Unlock bit active(1 = Yes, 0 = No) bit 1Block Lock Status Register Lock-Down bit active (1 = Yes, 0 = No) bit 15 to 2Reserved for future use; undefined bits are `0' VDD Logic Supply Optimum Program/Erase voltage (highest performance) bit 7 to 4HEX value in volts bit 3 to 0BCD value in 100 mV VPP Supply Optimum Program/Erase voltage bit 7 to 4HEX value in volts bit 3 to 0BCD value in 100 mV Number of Protection register fields in JEDEC ID space. "00h," indicates that 256 protection bytes are available Protection Field 1: Protection Description This field describes user-available. One Time Programmable (OTP) Protection register bytes. Some are pre-programmed with device unique serial numbers. Others are user programmable. Bits 0-15 point to the Protection register Lock byte, the section's first byte. The following bytes are factory pre-programmed and user-programmable. bit 0 to 7 Lock/bytes JEDEC-plane physical low address bit 8 to 15Lock/bytes JEDEC-plane physical high address bit 16 to 23 "n" such that 2n = factory pre-programmed bytes bit 24 to 31 "n" such that 2n = user programmable bytes Reserved Primary Algorithm extended Query table unique ASCII string "PRI" Description Value "P" "R" "I" "1" "0"
No Yes Yes No No Yes Yes No No
(P+9)h = 3Eh
0001h
Yes
(P+A)h = 3Fh (P+B)h = 40h
0003h 0000h
Yes Yes 3V
(P+C)h = 41h
0030h
(P+D)h = 42h
00C0h
12V
(P+E)h = 43h (P+F)h = 44h (P+10)h = 45h (P+11)h = 46h (P+12)h = 47h
0001h 0080h 0000h 0003h 0003h
01 80h 00h 8 Byte 8 Byte
(P+13)h = 48h
Note: 1. See Table 26., offset 15 for P pointer definition.
38/50
M28W160ECT, M28W160ECB
Table 30. Security Code Area
Offset 80h 81h 82h 83h 84h 85h 86h 87h 88h Data 00XX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX 64 bits: User Programmable OTP 64 bits: unique device number Protection Register Lock Description
39/50
M28W160ECT, M28W160ECB
APPENDIX C. FLOWCHARTS AND PSEUDO CODES
Figure 17. Program Flowchart and Pseudo Code
Start
Write 40h or 10h
program_command (addressToProgram, dataToProgram) {: writeToFlash (any_address, 0x40) ; /*or writeToFlash (any_address, 0x10) ; */ writeToFlash (addressToProgram, dataToProgram) ; /*Memory enters read status state after the Program Command*/ do { status_register=readFlash (any_address) ; /* E or G must be toggled*/
Write Address & Data
Read Status Register
b7 = 1 YES b3 = 0 YES b4 = 0 YES b1 = 0 YES End
NO } while (status_register.b7== 0) ;
NO
VPP Invalid Error (1, 2)
if (status_register.b3==1) /*VPP invalid error */ error_handler ( ) ;
NO
Program Error (1, 2)
if (status_register.b4==1) /*program error */ error_handler ( ) ;
NO
Program to Protected Block Error (1, 2)
if (status_register.b1==1) /*program to protect block error */ error_handler ( ) ;
}
AI03538b
Note: 1. Status check of b1 (Protected Block), b3 (VPP Invalid) and b4 (Program Error) can be made after each program operation or after a sequence. 2. If an error is found, the Status Register must be cleared before further Program/Erase Controller operations.
40/50
M28W160ECT, M28W160ECB
Figure 18. Double Word Program Flowchart and Pseudo Code
Start
Write 30h
Write Address 1 & Data 1 (3)
Write Address 2 & Data 2 (3)
double_word_program_command (addressToProgram1, dataToProgram1, addressToProgram2, dataToProgram2) { writeToFlash (any_address, 0x30) ; writeToFlash (addressToProgram1, dataToProgram1) ; /*see note (3) */ writeToFlash (addressToProgram2, dataToProgram2) ; /*see note (3) */ /*Memory enters read status state after the Program command*/ do { status_register=readFlash (any_address) ; /* E or G must be toggled*/
Read Status Register
b7 = 1 YES b3 = 0 YES b4 = 0 YES b1 = 0 YES End
NO } while (status_register.b7== 0) ;
NO
VPP Invalid Error (1, 2)
if (status_register.b3==1) /*VPP invalid error */ error_handler ( ) ;
NO
Program Error (1, 2)
if (status_register.b4==1) /*program error */ error_handler ( ) ;
NO
Program to Protected Block Error (1, 2)
if (status_register.b1==1) /*program to protect block error */ error_handler ( ) ;
}
AI03539b
Note: 1. Status check of b1 (Protected Block), b3 (VPP Invalid) and b4 (Program Error) can be made after each program operation or after a sequence. 2. If an error is found, the Status Register must be cleared before further Program/Erase operations. 3. Address 1 and Address 2 must be consecutive addresses differing only for bit A0.
41/50
M28W160ECT, M28W160ECB
Figure 19. Program Suspend & Resume Flowchart and Pseudo Code
Start program_suspend_command ( ) { writeToFlash (any_address, 0xB0) ; writeToFlash (any_address, 0x70) ; /* read status register to check if program has already completed */ Write 70h do { status_register=readFlash (any_address) ; /* E or G must be toggled*/
Write B0h
Read Status Register
b7 = 1 YES b2 = 1 YES Write FFh
NO
} while (status_register.b7== 0) ;
NO
Program Complete
if (status_register.b2==0) /*program completed */ { writeToFlash (any_address, 0xFF) ; read_data ( ) ; /*read data from another block*/ /*The device returns to Read Array (as if program/erase suspend was not issued).*/
Read data from another address
} else { writeToFlash (any_address, 0xFF) ; read_data ( ); /*read data from another address*/ writeToFlash (any_address, 0xD0) ; /*write 0xD0 to resume program*/ } } Read Data
Write D0h
Write FFh
Program Continues
AI03540b
42/50
M28W160ECT, M28W160ECB
Figure 20. Erase Flowchart and Pseudo Code
Start erase_command ( blockToErase ) { writeToFlash (any_address, 0x20) ; writeToFlash (blockToErase, 0xD0) ; /* only A12-A20 are significannt */ /* Memory enters read status state after the Erase Command */
Write 20h
Write Block Address & D0h
Read Status Register
do { status_register=readFlash (any_address) ; /* E or G must be toggled*/
b7 = 1
NO } while (status_register.b7== 0) ;
YES b3 = 0 YES b4, b5 = 1 NO b5 = 0 YES b1 = 0 YES End }
AI03541b
NO
VPP Invalid Error (1)
if (status_register.b3==1) /*VPP invalid error */ error_handler ( ) ;
YES
Command Sequence Error (1)
if ( (status_register.b4==1) && (status_register.b5==1) ) /* command sequence error */ error_handler ( ) ;
NO
Erase Error (1)
if ( (status_register.b5==1) ) /* erase error */ error_handler ( ) ;
NO
Erase to Protected Block Error (1)
if (status_register.b1==1) /*program to protect block error */ error_handler ( ) ;
Note: If an error is found, the Status Register must be cleared before further Program/Erase operations.
43/50
M28W160ECT, M28W160ECB
Figure 21. Erase Suspend & Resume Flowchart and Pseudo Code
Start
Write B0h
erase_suspend_command ( ) { writeToFlash (any_address, 0xB0) ; writeToFlash (any_address, 0x70) ; /* read status register to check if erase has already completed */
Write 70h
Read Status Register
do { status_register=readFlash (any_address) ; /* E or G must be toggled*/
b7 = 1 YES b6 = 1 YES Write FFh
NO
} while (status_register.b7== 0) ;
NO
Erase Complete
if (status_register.b6==0) /*erase completed */ { writeToFlash (any_address, 0xFF) ;
read_data ( ) ; /*read data from another block*/ /*The device returns to Read Array (as if program/erase suspend was not issued).*/
Read data from another block or Program/Protection Program or Block Protect/Unprotect/Lock else
} { writeToFlash (any_address, 0xFF) ; read_program_data ( ); /*read or program data from another address*/ writeToFlash (any_address, 0xD0) ; /*write 0xD0 to resume erase*/ } }
Write D0h
Write FFh
Erase Continues
Read Data
AI03542b
44/50
M28W160ECT, M28W160ECB
Figure 22. Locking Operations Flowchart and Pseudo Code
Start
Write 60h
locking_operation_command (address, lock_operation) { writeToFlash (any_address, 0x60) ; /*configuration setup*/ if (lock_operation==LOCK) /*to protect the block*/ writeToFlash (address, 0x01) ; else if (lock_operation==UNLOCK) /*to unprotect the block*/ writeToFlash (address, 0xD0) ; else if (lock_operation==LOCK-DOWN) /*to lock the block*/ writeToFlash (address, 0x2F) ; writeToFlash (any_address, 0x90) ;
Write 01h, D0h or 2Fh
Write 90h
Read Block Lock States
Locking change confirmed? YES Write FFh
NO
if (readFlash (address) ! = locking_state_expected) error_handler () ; /*Check the locking state (see Read Block Signature table )*/
writeToFlash (any_address, 0xFF) ; /*Reset to Read Array mode*/ }
End
AI04364
45/50
M28W160ECT, M28W160ECB
Figure 23. Protection Register Program Flowchart and Pseudo Code
Start
Write C0h
protection_register_program_command (addressToProgram, dataToProgram) {: writeToFlash (any_address, 0xC0) ;
Write Address & Data
writeToFlash (addressToProgram, dataToProgram) ; /*Memory enters read status state after the Program Command*/ do { status_register=readFlash (any_address) ; /* E or G must be toggled*/
Read Status Register
b7 = 1 YES b3 = 0 YES b4 = 0 YES b1 = 0 YES End
NO } while (status_register.b7== 0) ;
NO
VPP Invalid Error (1, 2)
if (status_register.b3==1) /*VPP invalid error */ error_handler ( ) ;
NO
Program Error (1, 2)
if (status_register.b4==1) /*program error */ error_handler ( ) ;
NO
Program to Protected Block Error (1, 2)
if (status_register.b1==1) /*program to protect block error */ error_handler ( ) ;
}
AI04381
Note: 1. Status check of b1 (Protected Block), b3 (VPP Invalid) and b4 (Program Error) can be made after each program operation or after a sequence. 2. If an error is found, the Status Register must be cleared before further Program/Erase Controller operations.
46/50
M28W160ECT, M28W160ECB
APPENDIX D. COMMAND INTERFACE AND PROGRAM/ERASE CONTROLLER STATE
Table 31. Write State Machine Current/Next, sheet 1 of 2.
Current State Read Array Read Status Read Elect.Sg. Read CFI Query Lock Setup Lock Cmd Error Lock (complete) Prot. Prog. Setup Prot. Prog. (continue) Prot. Prog. (complete) Prog. Setup Program (continue) Prog. Sus Status Prog. Sus Read Array Prog. Sus Read Elect.Sg. Prog. Sus Read CFI Program (complete) Erase Setup Erase Cmd.Error Erase (continue) Erase Sus Read Sts Erase Sus Read Array Erase Sus Read Elect.Sg. Erase Sus Read CFI Erase (complete) SR bit 7 "1" "1" "1" "1" "1" "1" "1" "1" "0" "1" "1" "0" "1" "1" "1" "1" "1" "1" "1" "0" "1" "1" "1" "1" "1" Data When Read Array Status Electronic Signature CFI Status Status Status Status Status Status Status Status Status Array Electronic Signature CFI Status Status Status Status Status Array Electronic Signature CFI Status Erase Sus Read Array Erase Sus Read Array Erase Sus Read Array Erase Sus Read Array Read Array Prog. Sus Read Array Prog. Sus Read Array Prog. Sus Read Array Prog. Sus Read Array Read Array Program (continue) Program Suspend to Read Array Program Suspend to Read Array Program Suspend to Read Array Program Suspend to Read Array Program Setup Erase Setup Erase (continue) Program (continue) Program (continue) Program (continue) Program (continue) Read Array Program Setup Command Input (and Next State) Read Array (FFh) Program Setup (10/40h) Program Setup Program Setup Program Setup Erase Setup (20h) Ers. Setup Erase Setup Erase Setup Erase Setup Lock (complete) Erase Confirm (D0h) Prog/Ers Suspend (B0h) Read Array Read Array Read Array Read Array Lock Cmd Error Read Array Read Array Protection Register Program Protection Register Program continue Erase Setup Read Array Program Prog. Sus Read Sts Prog. Sus Read Array Prog. Sus Read Array Prog. Sus Read Array Prog. Sus Read Array Read Array Erase CmdError Read Array Erase Sus Read Sts Erase (continue) Erase (continue) Erase (continue) Erase (continue) Erase Sus Read Array Erase Sus Read Array Erase Sus Read Array Erase Sus Read Array Read Array Erase (continue) Program (continue) Program (continue) Program (continue) Program (continue) Program (continue) Prog. Sus Read Sts Prog. Sus Read Sts Prog. Sus Read Sts Prog. Sus Read Sts Read Status Prog. Sus Read Array Prog. Sus Read Array Prog. Sus Read Array Prog. Sus Read Array Read Array Read Status Read Array Lock (complete) Prog/Ers Resume (D0h) Read Status (70h) Read Sts. Read Status Read Status Read Status Clear Status (50h) Read Array Read Array Read Array Read Array
Read Array Prog.Setup Read Array Read Array Read Array
Lock Command Error Read Array Read Array Program Setup Program Setup Erase Setup Erase Setup
Lock Command Error Read Status Read Status Read Array Read Array
Erase Command Error Read Array Program Setup Erase Setup
Erase Command Error Read Status Read Array
Erase (continue) Program Setup Program Setup Program Setup Program Setup Program Setup Erase Sus Read Array Erase Sus Read Array Erase Sus Read Array Erase Sus Read Array Erase Setup
Erase (continue) Erase (continue) Erase (continue) Erase (continue) Erase (continue) Erase Sus Erase Sus Read Sts Read Array Erase Sus Erase Sus Read Sts Read Array Erase Sus Erase Sus Read Sts Read Array Erase Sus Erase Sus Read Sts Read Array Read Status Read Array
Note: Cmd = Command, Elect.Sg. = Electronic Signature, Ers = Erase, Prog. = Program, Prot = Protection, Sus = Suspend.
47/50
M28W160ECT, M28W160ECB
Table 32. Write State Machine Current/Next, sheet 2 of 2.
Command Input (and Next State) Current State Read Elect.Sg. (90h) Read CFI Query (98h) Lock Setup (60h) Lock Setup Lock Setup Lock Setup Lock Setup Prot. Prog. Setup (C0h) Prot. Prog. Setup Prot. Prog. Setup Prot. Prog. Setup Prot. Prog. Setup Prot. Prog. Setup Prot. Prog. Setup Lock Confirm (01h) Lock Down Confirm (2Fh) Read Array Read Array Read Array Read Array Lock (complete) Read Array Read Array Unlock Confirm (D0h)
Read Array Read Status Read Elect.Sg.
Read Elect.Sg. Read CFI Query Read Elect.Sg. Read CFI Query Read Elect.Sg. Read CFI Query
Read CFI Query Read Elect.Sg. Read CFI Query Lock Setup Lock Cmd Error Lock (complete) Prot. Prog. Setup Prot. Prog. (continue) Prot. Prog. (complete) Prog. Setup Program (continue) Prog. Suspend Read Status Prog. Suspend Read Array Prog. Suspend Read Elect.Sg. Prog. Suspend Read CFI Program (complete) Erase Setup Erase Cmd.Error Erase (continue) Erase Suspend Read Status Erase Suspend Read Array Erase Suspend Read Elect.Sg. Erase Suspend Erase Suspend Read Elect.Sg. Read CFI Query Erase Suspend Erase Suspend Read Elect.Sg. Read CFI Query Erase Suspend Erase Suspend Read Elect.Sg. Read CFI Query Read Elect.Sg. Read CFI Query Prog. Suspend Prog. Suspend Read Elect.Sg. Read CFI Query Prog. Suspend Prog. Suspend Read Elect.Sg. Read CFI Query Prog. Suspend Prog. Suspend Read Elect.Sg. Read CFI Query Prog. Suspend Prog. Suspend Read Elect.Sg. Read CFI Query Read Elect.Sg. Read CFIQuery Read Elect.Sg. Read CFI Query
Lock Command Error Read Elect.Sg. Read CFI Query Read Elect.Sg. Read CFI Query Lock Setup Lock Setup
Protection Register Program Protection Register Program (continue) Lock Setup Prot. Prog. Setup Program Program (continue) Program Suspend Read Array Program Suspend Read Array Program Suspend Read Array Program Suspend Read Array Lock Setup Prot. Prog. Setup Read Array Erase (continue) Read Array Program (continue) Program (continue) Program (continue) Program (continue) Read Array
Erase Command Error Lock Setup Prot. Prog. Setup Erase (continue) Lock Setup Lock Setup Lock Setup Lock Setup Lock Setup Erase Suspend Read Array Erase Suspend Read Array Erase Suspend Read Array Erase Suspend Read Array Prot. Prog. Setup Read Array
Erase (continue) Erase (continue) Erase (continue) Erase (continue)
Erase Suspend Erase Suspend Erase Suspend Read CFI Query Read Elect.Sg. Read CFI Query Erase (complete) Read Elect.Sg. Read CFI Query
Note: Cmd = Command, Elect.Sg. = Electronic Signature, Prog. = Program, Prot = Protection.
48/50
M28W160ECT, M28W160ECB
REVISION HISTORY
Table 33. Document Revision History
Date 21-Nov-2002 18-Feb-2004 Version 1.0 2.0 First Issue S packing option added to Table 21., Ordering Information Scheme and Table 22., Daisy Chain Ordering Scheme. Document Status promoted from Target Specification to Preliminary Data. Datasheet status updated to "Full Datasheet". Lead-free package options added in FEATURES SUMMARY, SIGNAL DESCRIPTIONS, Table 11., Absolute Maximum Ratings and PART NUMBERING sections. Tape & Reel Packing options updated in Table 21., Ordering Information Scheme and Table 22., Daisy Chain Ordering Scheme Table 21., Ordering Information Scheme and Table 22., Daisy Chain Ordering Scheme updated. U packing option added in Table 21., Ordering Information Scheme. ECOPACK text updated. Main Block Erase time and Parameter Block Erase time updated in Table 7., Program, Erase Times and Program/Erase Endurance Cycles. Note: 1. and 2. added. Figure 13., TSOP48 - 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Outline and Table 19., TSOP48 - 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Mechanical Data updated. Applied Numonyx branding. Revision Details
1-July-2004
3.0
5-Aug-2004 16-Nov-2004
4.0 5.0
01-Dec-2005
6
26-Mar-2008
7
49/50
M28W160ECT, M28W160ECB
Please Read Carefully:
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH NUMONYXTM PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN NUMONYX'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NUMONYX ASSUMES NO LIABILITY WHATSOEVER, AND NUMONYX DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF NUMONYX PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Numonyx products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications. Numonyx may make changes to specifications and product descriptions at any time, without notice. Numonyx, B.V. may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Numonyx reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. Contact your local Numonyx sales office or your distributor to obtain the latest specifications and before placing your product order. Copies of documents which have an order number and are referenced in this document, or other Numonyx literature may be obtained by visiting Numonyx's website at http://www.numonyx.com. Numonyx StrataFlash is a trademark or registered trademark of Numonyx or its subsidiaries in the United States and other countries. *Other names and brands may be claimed as the property of others. Copyright (c) 11/5/7, Numonyx, B.V., All Rights Reserved.
50/50


▲Up To Search▲   

 
Price & Availability of M28W160ECB70N1

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X